Exercise 6

The radius of a sphere is increasing at a rate of $4 \mathrm{~mm} / \mathrm{s}$. How fast is the volume increasing when the diameter is 80 mm ?

Solution

The volume of a sphere with radius r is

$$
V=\frac{4}{3} \pi r^{3} .
$$

Differentiate both sides with respect to t, using the chain rule on the right side.

$$
\begin{aligned}
\frac{d}{d t}(V) & =\frac{d}{d t}\left(\frac{4}{3} \pi r^{3}\right) \\
\frac{d V}{d t} & =\left(4 \pi r^{2}\right) \cdot \frac{d r}{d t}
\end{aligned}
$$

The radius is increasing by 4 millimeters per second, so $d r / d t=4 \mathrm{~mm} / \mathrm{s}$. Therefore, when the diameter is 80 mm (that is, when $r=40$), the rate that the volume is increasing is

$$
\left.\frac{d V}{d t}\right|_{r=40}=4 \pi(40)^{2}(4)=25600 \pi \frac{\mathrm{~mm}^{3}}{\mathrm{~s}} .
$$

